Evaluation of Performance of Decision Tree, Support Vector Machine and Probabilistic Neural Network
Diabetic Retinopathy (DR) is a medical condition where the retina is damaged because fluid leaks from blood vessels into the retina. Ophthalmologists recognize diabetic retinopathy based on features, such as blood vessel area, exudes, hemorrhages, microaneurysms and texture.
Aim: The focus of this paper is to evaluate the performance of Decision Tree (DT), Support Vector Machine (SVM) and Probabilistic Neural Network (PNN) Classifiers in Diabetes Retinopathy Detection.
Results: Corresponding results showed SVM has the best classification strength by achieving Recognition Accuracy (RA) of 98.50%, while PNN and DT achieved RA of 97.60% and 89.20% respectively. In terms of False Acceptance Rate (FAR) and False Rejection Rate (FRR), SVM has the least values of 7.21, 8.10 while DT and PNN showed 11.10, 9.30 and 13.21, 10.10 respectively. However, in this paper a Mobile based Diabetes Retinopathy Detection System was developed to make the system available for the masses for early detection of the disease.
Please read full article : - www.journalajrcos.com